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Meso-scale structures

Interesting sub-structures in complex networks: communities,

(almost-)bipartite subgraphs, and core-periphery

Random walks and spectral methods are powerful tools to discover

them.
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Meso-scale structures - block models

(a) (b)

(c) (d)

Examples of block models for meso-scale structures in undirected graphs.

Shaded areas represent densities of non-zero entries in idealized

adjacency matrices.

(a) A block model with two communities. (b) A block model with two

anti-communities. (c,d) The two protypical core-periphery block models.
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Variational properties of eigenvalues

Let A = AT ≥ O, eigenvalues ρ(A) = λ1 ≥ λ2 ≥ . . . ≥ λn,

associate eigenvectors: v1, v2, . . . , vn. Rayleigh quotient:

R(v) =
vT Av

vT v
=

∑
i∼j vivj∑

i v
2
i

.

• λ1 = supR(v). Note: we can choose v1 ≥ 0.

• λ2 = supvT
1 v=0R(v). Note: v2 cannot have constant sign.

• λn = infR(v). Note: vn cannot have constant sign.

Try this procedure!

Compute vi for i ∈ {1, 2, n}.
Permute nodes so that (vi )1 ≥ (vi )1 ≥ . . . ≥ (vi )n.

Do spy(A).
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Meso-scale structures - basic spectral methods

Figure 1: Node reordering of networks karate (top) and Davis

(bottom).
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Simultaneous community/anti-community detection

• Left: adjacency matrix a graph with one community and two

anti-communities.

• Center: the eigenvalue hystogram reveals two extreme, well

separated eigenvlaues.

• Right: the entries of the eigenvectors corresponding to the extreme

eigenvalues cluster the nodes belonging to each group.
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Graph clustering – Community detection

A relevant problem in graph theory and network science:

Locate one or more groups of nodes which are

tightly connected internally but sparsely connected to each other

Applications

• Identify people with similar interests/behaviours

• graph compression

• automatic document classification, topic extraction

• identification of functional modules
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Modules as communities

How to identify “communities” inside a graph?

• Many answers available; trade-off betwen intercluster edges (many)

and intracluster edges (few)

• A different problem from graph partitioning:

“communities” are densely linked subgraphs

• number and size of clusters are not apriori specified.
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Community detection - first steps

Idea [Newman, Girvan ’04]

“A good division of a network into communities (...) is one in

which there are fewer than expected edges between communities.”

M. Newman, M. Girvan.

Finding and evaluating community structure in networks.

Phys. Rev. E, 69 (2004), 026113.

Idea (rephrased)

Let G = (V ,E ) be an undirected graph. A subset S ⊆ V is a

“community” if it contains more edges than expected if edges were

placed at random in G.
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Not only communities!

“ (...) exist nearly complete bipartite subgraphs within the

protein-protein interaction networks, i.e. two groups of proteins

with little or no intra-group connections but strong inter-group

connections.”

J. L. Morrison, R. Breitling, D. J. Higham, and D. R. Gilbert.

Bioinformatics, 2 (2006), 2012–2019.

“In an anti-community, vertices have most of their connections

outside their group and have no or fewer connections with the

members within the same group.”

L. Chen, Q. Yu, B. Chen. Information Sciences 275 (2014), 293–313.
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Notation

Let A be the adjacency matrix of G = (V ,E ),

d = (d1, . . . , dn)T = Ae the degree vector.

For S ⊆ V let χS be its characteristic vector,

(χS)i =

{
1 i ∈ S

0 i /∈ S .

vol S =
∑

i∈S di is the volume of S .

E (S) =
∑

i,j∈S Aij = χT

S AχS is the number of edges internal to S .

The modularity of S ⊆ V : Q(S) = E (S)− E(edges inside S)
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The modularity of a subgraph

The modularity of S ⊆ V : Q(S) = E (S)− E(edges inside S)

The rightmost term depends on the meaning of the phrase

“placing edges at random”.

Erdös–Rényi random graph model

The probability that (i , j) ∈ E is α =
∑

k dk/n
2.

E(. . .) = p|S |2  Q(S) = E (S)− α|S |2.

Chung–Lu random graph model

Fixed d1, . . . , dn, the probability that (i , j) ∈ E is didj/
∑

k dk .

E(. . .) =
∑
i,j∈S

didj∑
k dk

 Q(S) = E (S)− (vol S)2

volV
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The modularity matrix

In both cases there exists a matrix M such that Q(S) = χT
S MχS .

• E–R model:

Q(S) = χT
S AχS − α|S |2

= χT
S AχS − α(eT χS)2 = χT

S [A− αeeT ]χS

where α =
∑

i di/n
2.

• C–L model: Let d = Ae be the degree vector. Then,

Q(S) = χT
S AχS −

(vol S)2

volV

= χT
S AχS −

(dT χS)2

volV
= χT

S [A− σddT ]χS

where σ = 1/volV .
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Generalized modularity matrices

Definition

A generalized modularity matrix M is a matrix of the form

M = A + D − σxxT

where:

• A is symmetric and (entrywise) nonnegative

• D is a diagonal matrix

• σ is a positive scalar

• x 6= 0 is a nonnegative vector

All modularity functions having the form

Q(S) = E (S) +
∑

i∈SDii − σ
(∑

i∈Sxi
)2

can be restated as quadratic forms: Q(S) = χT
S MχS .
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Simultaneous community/anti-community detection

Let Q(S) = χT

S MχS be a modularity measure induced by a modularity

matrix. In practice, it is best to consider relative modularity measures

q(S) = Q(S)/µ(S) where µ(S) is an additive measure of S :

µ(S) = |S |, or µ(S) = vol (S).

A successful approach

• q(S)� 0  S is a “community”

• q(S)� 0  S is an “anti-community”
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Simultaneous community/anti-community detection

Let Q(S) = χT

S MχS be a modularity measure induced by a modularity

matrix. In practice, it is best to consider relative modularity measures

q(S) = Q(S)/µ(S) where µ(S) is an additive measure of S :

µ(S) = |S |, or µ(S) = vol (S).

Define the corresponding measure vector

mS = χS or mS = Diag(d)−1/2χS ,

respectively. Then

q(S) =
mT

S M̂mS

mT

S mS
= R(mS),

where M̂ is a suitable diagonal scaling of M. Thus locating “good” mod-

ules reduces to computing extremal eigenvalues of M̂.
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Main results - in a nutshell

We say that C ⊂ V is a module if |q(S)| is “large”.

Pseudo-theorem (see references for rigorous statements!)

Let C1, . . . ,Ck be pairwise disjoint modules,

|q(C1)| ≥ . . . ≥ |q(Ck)|.
Sort eigenvalues of M̂ as |λ1| ≥ |λ2| ≥ . . . ≥ |λn|
with corresponding eigenvectors v1, v2, . . . , vn.

Then mC1 , . . . ,mCk
are are “close” to 〈v1, . . . , vk〉.

Moreover, the relative error between q(Ci ) and λi is “small.”

Thus well separated, extreme eigenvalues of M̂ indicate the

presence of good modules.
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Nodal sets

How to reconstruct the modules from eigenvectors of a

(generalized) modularity matrix?

Nodal sets

Let G = (V ,E ) and v ∈ R|V | be given. The sets

{i ∈ V : vi ≥ 0}, {i ∈ V : vi < 0},

are the nodal sets induced by v .

Idea: use nodal sets (or intersections thereof) induced by extreme

eigenvectors.
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Modularity nodal theorems

Theorem

• M = A + D − σxxT generalized modularity matrix

• M vmax = λmax(M)vmax oriented so that xT vmax ≥ 0.

Then the subgraph induced by {i : vmax,i ≥ 0} is connected.

Nodal domains in a small graph. Left: Fiedler vector. Right: Leading

modularity eigenvector.
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Modularity nodal theorems

Theorem

• M = A + D − σxxT generalized modularity matrix

• M vmax = λmax(M)vmax oriented so that xT vmax ≥ 0.

Then the subgraph induced by {i : vmax,i ≥ 0} is connected.

More generally:

Let M = A+D −σxxT be any generalized modularity matrix, with eigen-

values λ1 ≥ λ2 ≥ · · · ≥ λn. Let vk be an eigenvector of λk oriented so

that vT
k x ≥ 0. Then the subgraph induced by {i : vk,i ≥ 0} has at most

k connected components.
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Modularity nodal theorems

Theorem

• M = A + D − σxxT generalized modularity matrix

• M vmax = λmax(M)vmax oriented so that xT vmax ≥ 0.

Then the subgraph induced by {i : vmax,i ≥ 0} is connected.

Figure 2: The principal eigenvector of the Newman-Girvan modularity

matrix and its nodal domains for the dolphins network. 18



If λmax(M) is large enough...

So we can obtain connected subgraphs by thresholding vmax.

Typically {i : vmax,i ≥ 0} is a good indicator of the leading module and it

has positive modularity (experimentally).

Actually, if λmax(M) is large enough and vmax is not localized, then the

subset {i : vmax,i ≥ 0} is a good module.

Theorem

Let Mv = λv with λ > 0.

For any S ⊂ V let α = ](v ,Span{χS , e}). Then,

Q(S) ≥ |S ||S̄ |
n

[
λ cos2 α + λmin(M)︸ ︷︷ ︸

<0

sin2 α
]
.
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If Q(C+) is large enough...

Let C+ be the node set with largest modularity. If Q(C+) is large

enough, then C+ is the set obtained by thresholding vmax .

Let Q(C1,C2) = eTC1
MeC2 be the joint modularity of the subsets C1, C2.

Theorem

If the subset C is such that

Q(C ) + Q(C̄ )− 2Q(C , C̄ ) ≥
√

(n − 1)2 + 1 ‖M + αI‖F − nα

for some α ∈ R, then

C = {i : vmax,i ≥ 0} = C+

being M vmax = λmax(M)vmax .
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How many communities?

Positive eigenvalues of M are related to the number of distinct

communities in G .

Theorem

Let {S1, . . . ,Sk} be an optimal(*) partitioning of V into modules,

Q(Si ) > 0, Q(Si ∪ Sj) ≤ Q(Si ) + Q(Sj).

Then k − 1 does not exceed the number of positive eig.s of M.

(*) with respect to the overall modularity
∑

i Q(Si ).
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Example

The inequality #communities ≤ #positive eig.s + 1 is sharp:

G :

K1

K3

K2

Kp A =


K1

1
2 I

1
2 I

1
2 I K2

. . .
. . .

. . . 1
2 I

1
2 I

1
2 I Kp


There are n = pq nodes

For i = 1, . . . , p each Ki is a clique with q nodes

consecutive clusters joined by q edges with weight < 1/2.

 A has p positive eig.s, M = A− q
nee

T has one less

 Nodal domains of M’s leading eigenvectors separate K1, . . . ,Kp.
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There are n = pq nodes

For i = 1, . . . , p each Ki is a clique with q nodes

consecutive clusters joined by q edges with weight < 1/2.

 A has p positive eig.s, M = A− q
nee

T has one less

 Nodal domains of M’s leading eigenvectors separate K1, . . . ,Kp. 22
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